Sains Malaysiana 54(2)(2025): 535-545
http://doi.org/10.17576/jsm-2025-5402-18
Valorization of Chemically-Treated Recycled Carbon
Black as a Filler in Biodegradable Cellulose-Based Mulching Films
(Valorisasi Karbon Hitam Kitar Semula Dirawat Secara Kimia sebagai Pengisi dalam Filem Sungkupan Berasaskan Selulosa Terbiodegradasi)
NUR ALIA
SAHIRA AZMI1, SIEW XIAN CHIN2,3, SARANI ZAKARIA1,3,
JUNFEI TIAN4 & CHIN HUA CHIA1,3,*
1Materials Science Program, Department of
Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2ASASIpintar Program, Pusat GENIUS@Pintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Quantum
Materials and Technology Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
4State Key Laboratory of Pulp
and Paper Engineering, School of Light Industry and Engineering, South China
University of Technology, Guangzhou 510640, China
Diserahkan: 31 Ogos 2024/Diterima: 12 November 2024
Abstract
Researchers are exploring ways to incorporate carbon-based fillers like
recycled carbon black (rCB) into cellulose films for
use as biodegradable mulching films in agriculture. Adding dark fillers can
increase opacity to control light exposure and moisture for optimizing crop
environments. This study aimed to create an eco-friendly black mulching film by
mixing treated rCB into a regenerated cellulose
matrix derived from cotton linters. The rCB was
chemically treated to modify its properties. Cellulose films were made with
10%, 25%, and 50% treated rCB mixed into a cotton
linter cellulose solution. The films were characterized for properties like
morphology, transparency, thermal stability, wettability, water vapor
permeability, tensile strength, and soil biodegradation. Compared to untreated rCB, the treated filler improved the films’ cross-section,
surface area, and porosity. Higher rCB increased
opacity but decreased tensile strength. Adding 10% treated rCB optimized the decomposition rate. Increasing to 50% progressively slowed
decomposition. The rCB made the films more
hydrophilic, and 10% treated rCB gave the best water
vapor transmission performance. While rCB did not
impact overall biodegradability, the 10% treated rCB film degraded fastest in soil once surface deterioration began. In summary,
incorporating 10% chemically treated recycled carbon black into cellulose films
derived from cotton linters produced an optimized eco-friendly black
biodegradable mulching film material.
Keywords: Cellulose film; degradation;
hydrophilicity; porosity; rCB; transparency
Abstrak
Para penyelidik sedang mengkaji cara untuk memasukkan pengisi berasaskan karbon seperti karbon hitam (rCB) kitar semula ke dalam filem selulosa untuk digunakan sebagai filem sungkupan biodegradasi dalam pertanian. Menambah pengisi gelap boleh meningkatkan kelegapan untuk mengawal pendedahan cahaya dan kelembapan untuk mengoptimumkan persekitaran tanaman. Penyelidikan ini bertujuan untuk mencipta filem sungkupan hitam mesra alam dengan mencampurkan rCB terawat ke dalam matriks selulosa yang dijana semula yang diperoleh daripada linter kapas. rCB telah dirawat secara kimia untuk mengubah suai sifatnya. Filem selulosa dihasilkan dengan 10%, 25% dan
50% rCB terawat yang dicampurkan ke dalam larutan selulosa linter kapas. Filem tersebut dicirikan untuk sifat seperti morfologi, ketelusan, kestabilan terma, kebolehbasahan, kebolehtelapan wap air, kekuatan tegangan dan biodegradasi tanah. Berbanding dengan rCB yang tidak dirawat, pengisi yang dirawat meningkatkan keratan rentas, luas permukaan dan keliangan filem. rCB yang lebih tinggi meningkatkan kelegapan tetapi mengurangkan kekuatan tegangan. Penambahan 10% rCB yang dirawat mengoptimumkan kadar penguraian. Peningkatan secara progresif sebanyak 50% dalam memperlahankan penguraian. rCB menjadikan filem lebih hidrofilik dan 10% rCB yang dirawat memberikan prestasi penghantaran wap air yang terbaik. Walaupun rCB tidak memberi kesan kepada kebolehbiodegradan keseluruhan, filem rCB terawat 10% terdegradasi paling cepat dalam tanah sebaik sahaja kemerosotan permukaan bermula. Ringkasnya, menggabungkan 10% karbon hitam kitar semula yang dirawat secara kimia ke dalam filem selulosa yang diperoleh daripada linter kapas menghasilkan bahan filem sungkupan biodegradasi hitam mesra alam yang dioptimumkan.
Kata kunci: Filem selulosa; hidrofilik; keliangan; kemerosotan; ketelusan; rCB
RUjukan
Amalini, A.N., Haida, M.K.N., Imran, K. & Haafiz, M.K.M. 2019. Relationship between dissolution
temperature and properties of oil palm biomass based-regenerated cellulose
films prepared via ionic liquid. Materials Chemistry and Physics 221:
382-389.
Amare, G. & Desta, B. 2021. Coloured
plastic mulches: Impact on soil properties and crop productivity. Chemical
and Biological Technologies in Agriculture 8: 4.
Azmi, N.A.S., Lau, K.S., Chin, S.X.,
Zakaria, S., Chowdhury, S. & Chia, C.H. 2023. Study on effect of
toluene-acid treatments of recycled carbon black from waste tyres: Physico-chemical analyses and adsorption performance. Sains Malaysiana 52(9): 2689-2696.
Briassoulis, D. & Giannoulis,
A. 2018. Evaluation of the functionality of bio-based plastic mulching films. Polymer
Testing 67: 99-109.
Bumrungnok, K., Threepopnatkul,
P., Amornsakchai, T., Chia, C.H., Wongsagonsup,
R. & Smith, S.M. 2023. Toward a circular bioeconomy:
Exploring pineapple stem starch film as protective coating for fruits and
vegetables. Polymers 15(11): 2493.
Dong, P., Maneerung,
T., Cheng, W., Zhen, X., Dai, Y., Tong, W.Y., Ting, Y., Nuo,
S., Wang, C. & Gee Neoh, K. 2017. Chemically
treated carbon black waste and its potential applications. Journal of
Hazardous Materials 321: 62-72.
Fida Banu, M.R., Rani, B., Kavya, S.R. & Nihala Jabin, P.P. 2023. Biochar:
A black carbon for sustainable agriculture. International Journal of
Environment and Climate Change 13(6): 418-432.
Galli, E. 1982. Carbon blacks. Plastics
Compounding 5(2): 1-5.
Geng, H., Yuan, Z., Fan, Q., Dai, X., Zhao, Y.,
Wang, Z. & Qin, M. 2014. Characterisation of cellulose films regenerated
from acetone/water coagulants. Carbohydrate Polymers 102(1): 438-444.
Haapala, T., Palonen,
P., Tamminen, A. & Ahokas,
J. 2015. Effects of different paper mulches on soil temperature and yield of
cucumber (Cucumis sativus L.) in the temperate zone. Agricultural and
Food Science 24(1): 52-58.
Harada, J., Macedo, J.R.N., Machado,
G.A.F., Valenzuela-Díaz, F., Moura, E.A.B. & Rosa, D.S. 2016. Effects of
carbon black incorporation on morphological, mechanical and thermal properties
of biodegradable films. In Characterization of Minerals, Metals, and
Materials, edited by Ikhmayies, S.J., Li, B.,
Carpenter, J.S., Hwang, J-Y., Monteiro, S.N., Li, J., Firrao, D., Zhang, M.,
Peng, Z., Escobedo-Diaz, J.P. & Bai, C. Springer, Cham. pp.
697-704.
Harada, J., de Souza, A.G., de Macedo,
J.R.N. & Rosa, D.S. 2019. Soil culture: Influence of different natural
fillers incorporated in biodegradable mulching film. Journal of Molecular
Liquids 273: 33-36.
Kader, M.A., Senge, M., Mojid,
M.A. & Ito, K. 2017. Recent advances in mulching materials and methods for
modifying soil environment. Soil and Tillage Research 168: 155-166.
Kasirajan, S. & Ngouajio,
M. 2012. Polyethylene and biodegradable mulches for agricultural applications:
A review. Agronomy for Sustainable Development 32(2): 501-529.
Lamont, W.J. 2017. Plastic mulches for the
production of vegetable crops. In A Guide to the Manufacture, Performance,
and Potential of Plastics in Agriculture, edited by Orzolek,
M.D. Elsevier Ltd. pp. 45-60.
Liu, S. & Zhang, L. 2009. Effects of
polymer concentration and coagulation temperature on the properties of
regenerated cellulose films prepared from LiOH/urea
solution. Cellulose 16(2): 189-198.
Ning, R., Liang, J., Sun, Z., Liu, X. &
Sun, W. 2021. Preparation and characterization of black biodegradable mulch
films from multiple biomass materials. Polymer Degradation and Stability 183: 109411.
Puri, L., Hu, Y. & Naterer,
G. 2024. Critical review of the role of ash content and composition in biomass
pyrolysis. Frontiers in Fuels https://doi.org/10.3389/ffuel.2024.1378361
Qiu, K. & Netravali, A.N. 2012.
Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites
Science and Technology 72(13): 1588-1594.
Tarara, J.M. 2000. Microclimate modification with
plastic mulch. HortScience 35(2): 169-180.
Wang, J., Gardner, D.J., Stark, N.M., Bousfield, D.W., Tajvidi, M.
& Cai, Z. 2018. Moisture and oxygen barrier properties of cellulose
nanomaterial-based films. ACS Sustainable Chemistry and Engineering 6(1): 49-70.
Yang, Y., Li, P., Jiao, J., Yang, Z., Lv, M., Li, Y., Zhou, C., Wang, C., He, Z., Liu, Y. &
Song, S. 2020. Renewable sourced biodegradable mulches and their environment
impact. Scientia Horticulturae 268: 109375.
Yeng, L.C., Wahit,
M.U. & Othman, N. 2015. Thermal and flexural properties of regenerated cellulose(RC)/poly(3- hydroxybutyrate)(PHB)biocomposites. Jurnal Teknologi 75(11): 107-112.
Zhang, R., Wang, X. & Cheng, M. 2018.
Preparation and characterization of potato starch film with various size of
Nano-SiO2. Polymers 10(10): 9-12.
Zhang, S., Zhang, X., Wan, X., Zhang, H.
& Tian, J. 2023. Fabrication of biodegradable films with UV-blocking and
high-strength properties from spent coffee grounds. Carbohydrate Polymers 321: 121290.
*Pengarang untuk surat-menyurat;
email: chia@ukm.edu.my
|